

February/March 2022 | volume 5 | number 2

Snapshots of Some Topics of Recent Advances in Chemistry

- Synthesis of Angular Hetarenocoumarins
- Isolation of Ni(II) meso-dimesitylnorcorrole radical anion
- Synthesis of Alkyl-Co complexes containing polydentate ligands as directing groups via C(sp³)-H activation
- Asymmetric synthesis of chiral pyrrolidines *via* oxetane desymmetrization

BTL NEDERLAND

February/March 2022 | volume 5 | number 2

Table of contents

- 3 Snapshots of some topics of recent advances in chemistry:
- 4 Synthesis of angular hetarenocoumarins
- 6 Isolation of Ni(II) meso-dimesitylnorcorrole radical anion
- 7 Synthesis of Alkyl-Co complexes containing polydentate ligands as directing groups *via* C(sp³)-H activation
- 9 Asymmetric synthesis of chiral pyrrolidines *via* oxetane desymmetrization

February/March 2022 | volume 5 | number 2

Snapshots of some topics of interest of recent notable advances in chemistry

Atef S. Iskander

Managing Director / Founder

Synthesis of Angular Hetarenocoumarins

The preparation of angular hetarenocoumarins starting from 7-hydroxy-3-(benzothiazole-2-yl)-coumarin is highlighted.

KEYWORDS: 7-hydroxy-3-benzothiazolylcoumarin, aminomethylation, formylation, cyclization, hetarenocoumarins.

Coumarins are naturally occurring active constituents of various plants and exhibit an extraordinary array of biochemical and pharmacological activity. Furthermore, this class of phenolic compounds formed by the association of β -pyrone rings with benzene has remarkable applications in dye industries owing to their outstanding photophysical properties. In this regard, Shokel *et al.* examined their work on 7-hydroxy-3-(benzothiazol-2-yl)coumarin **1** to synthesize angular hetarenocoumarin compounds, namely furo[2,3-h]chromen-2-ones.

o-hydroxy-formyl coumarins are considered as an appropriate substrate for the synthesis of hetarenocoumarins. Thus, targeting the preparation of 8-formylcoumarin, namely 3-(1,3-benzothiazol-2-yl-7-hydroxy-2-oxo-2*H*-8-chromenecarbaldehyde **3** was achieved by the reaction of **1** with hexamethylenetetramine in acetic acid *via* the Duff reaction (Scheme 1). Also, 8-formylcoumarin **3** can be prepared from 3-(1,3-benzothiazol-2-yl)-8-dimethylamino-methyl-7-hydroxy-2*H*-2-chromenone **2** *via* the Duff reaction. It is worth noting that compound **2** can be prepared *via* aminomethylation under classical Mannich reaction conditions using benzylamines in dioxane. Finally, the furo[2,3-*h*]chromen-2-one system **4** was obtained from compound **3** by the reaction of **3** with 4-nitrophenacyl bromide upon heating in dimethylformamide at 100 °C in the presence of K₂CO₃. Ring closure is proceeded *via* alkylation of the hydroxyl group followed by the condensation of active methylene and carbonyl groups, forming the furan fragment.

Insights

Scientific Literature Review

February/March 2022 | volume 5 | number 2

Scheme 1. The syntheses of 3-(1,3-benzothiazol-2-yl)-8-(4-nitro-benzoyl)-2H-furo[2,3-h]chromen-2-one 4.

Review

1) T. Shokol, A. Suprun, V. Moskvina, V. Khilya, French-Ukrainian J. Chem., 2021, 9.

Isolation of Ni(II) meso-dimesitylnorcorrole Radical Anion

A developed n-type organic semiconductor compound is highlighted. Ni(II) *meso*dimesitylnorcorrole radical anion was isolated upon chemical reduction of the corresponding natural species with cobaltocene ($Co^{II}Cp_2$).

KEYWORDS: radical anion, porphyrinoid, antiaromatic.

n-type organic semiconductors are characterized by their high carrier mobility. To realize such a property, it is recommended to suppress structural change upon charge injection, leading to small reorganization energies. Ukai *et al.* reported a new n-type molecule, that they selected Ni(II) *meso*-dimesitylnorcorrole **1** as a stable and distinctly anti-aromatic molecule with a 16 π -electronic system. This class of molecules is characterized by excellent reversibility of the redox process owing to their narrow HOMO-LUMO energy gap and possesses the ability to form one-dimensional π -stacking in the solid state, resulting in its n-type semiconducting property. They prepared and isolated compound **1** with cobaltocene (Co^{II}Cp₂) to yield its radical anion **2** (Scheme 1).

Scheme 1. Chemical reduction of 1 to form radical anion 2.

The radical anion 2 showed high stability and can be stored for long periods in the solid state. In addition, it exhibits small reorganization energy upon one-electron reduction even smaller than those of Zn(II) porphyrin and C_{60} fullerenes as revealed by DFT calculations. Besides, it features good electron-affinity as seen in its reduction potential of -0.92 V (vs Fc/Fc⁺).

These properties should pave the way for designing of high-performance n-type semiconductors.

Review

2) S. Ukai, N. Fukui, T. Akeue, H. Shinokubo, Chem. Lett., 2022, 51, 182-184.

Synthesis of Alkyl-Co Complexes Containing Polydentate Ligands as Directing Groups *via* C(sp³)-H Activation

The synthesis of an alkyl-Co(III) complex from *N*,*N*'-bis(8-quinolyl)malonamide derivative through selective β -C(sp³)-H activation is highlighted. The malonamide substrate was shown to be converted into a pentadentate ligand with an N₄C set, acquiring a helical configuration around the Co(III) center.

KEYWORDS: C-H bond activation, alkyl-cobalt complex, C-N bond reductive elimination.

Cobalt mediated carbon-hydrogen functionalization plays an important role in the direct formation of carboncarbon and carbon-heteroatom bonds from C-H bonds. In this context, Tahara *et al.* reported the preparation of alkyl-Co(III) complex possessing a polydentate ligand as a directing group *via* C(sp³)-H activation. Their strategy is based on enhancing the stability of the complex through polydentate ligation. So, *N*,*N*'-bis(8quinolyl)malonamide derivative **1** was employed in order to disubstituted of two ethyl groups in the malonyl fragment containing the C(sp³)-H bonds. The preparation of alkyl-Co(III) complex **2** was accomplished by the stoichiometric reaction of CoCl₂ with **1** in a mixture of MeOH and CH₂Cl₂ in the presence of NEt₃ under aerobic oxidation of the Co(II) salt at 40 °C for 24 h to afford a mixture of the cobaltacycle **2** as a dark brown solid in 52% yield and a C(sp³)-H aminated product **3** in 5% yield with conversion of **1** occurring in 98% (Scheme 1). Taking into consideration that the soft base (NEt₃) is effective in deprotonating an *N*,*N*'-bis(8quinolyl) malonamide derivative lacking two alkyl groups to provide a four-coordinated Co(II) complex with *N*,*N*,*N*,*N*-tetradentate ligand. The relative configuration of the β-lactam **3** was determined as the *cis* configuration between the methyl and ethyl groups by differential NOE analysis.

Scheme 1. Stoichiometric reaction of 1 with Co(II) compound.

The combined NMR spectroscopic and X-ray crystal structural analyses of the resulting cobaltacycle revealed that the substrate was converted into a pentadentate ligand with an N₄C set, yielding a helical configuration around the Co(III) center. The defined coordination geometry around the Co(III) center allowed the direct observation of reductive elimination of $C(sp^3)$ -N from an isolated Co(III) complex. These findings reflect important facts regarding the synthesis and reactivity of metallacycles toward designing elaborate $C(sp^3)$ -H functionalization systems.

Review

1) K. Tahara, S. Takezaki, Y. Ozawa, M. Abe, Bull. Chem. Soc. Jpn., 2022, 95, 400-409.

Asymmetric Synthesis of Chiral Pyrrolidines *via* Oxetane Desymmetrization

Two novel protocols for efficient asymmetric synthesis of chiral pyrrolidines bearing an allcarbon quaternary stereocenter in the 3-position through oxetane desymmetrization are outlined. They employed a readily available *tert*-butylsulfinamide chiral auxiliary and a catalytic system with chiral phosphoric acid as the source of chirality, respectively.

KEYWORDS: pyrrolidines, oxetane, *tert*-butylsulfinamide.

Pyrrolidines have received considerable attention because of their ubiquity in both medicinal chemistry and organic synthesis. Thus, the construction of enantioenriched pyrrolidines has been extensively studied, but remains a challenge to establish a stereogenic center in the relatively remote 3-position. Addressing this challenge, Zhang *et al.* reported two novel asymmetric synthetic approaches for chiral pyrrolidines bearing an all carbon quaternary stereocenter in the 3-position based on oxteane desymmetrization, which provide rapid access to the target pyrrolidines.

In the first protocol, the cyclization of a 3,3-disubstituted oxetane tethered with *tert*-butylsulfinamide as chiral auxiliary and In(OTf)₃ as catalyst, featuring mild conditions and remarkable diastereocontrol (Scheme 1). Using benzoic acid as cocatalyst and toluene as solvent, a range of oxetanes reacted smoothly to form the corresponding pyrrolidines. Alternatively, methyl *tert*-butyl ether (MTBE) was used as solvent in the case of the presence of electron-withdrawing groups, which they exhibited a deceleration under the former conditions.

Scheme 1. 3,3-disubstituted oxetane tethered with (R) tert-butylsulfinamide to provide pyrrolidines.

Further improvement by chiral phosphoric acid catalysis was achieved (Scheme 2). The use of a 2-naphthalenesulfonyl group for amine protection is crucial for the achieved excellent efficiency and enantioselectivity.

Scheme 2. Synthesis chiral pyrrolidines bearing an all carbon quaternary stereocenter in the 3-position.

Both protocols exhibited good substrate scope with excellent functional group compatibility.

Review

1) R. Zhang, M. Sun, Q. Yan, X. Lin, X. Li, X. Fang, H. H. Y. Sung, I. D. Williams, J. Sun, Org. Lett., 2022, 24, 2359-2364.